BALANCING CHEMICAL EQUATIONS

$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$ C=1 C=1

H=4 0=4 C=1 H=4 O=4 Balancing chemical equations means *adding coefficients* to the beginning of the chemical formulas of the reactants and the products to conform to the law of *conservation* of mass.

reactants

products

A skeleton equation is a chemical equation that presents the reagents and products of a chemical change without taking into account the law of conservation of mass.

Skeleton equation for octane (C_8H_{18}) combustion $C_8H_{18 (g)} + O_{2 (g)} \rightarrow CO_{2 (g)} + H_2O_{(g)}$ To observe the law of conservation of mass, a skeleton equation must be balanced to ensure equal numbers of atoms in the reactants and the products.

 $C_3H_8 + O_2 \rightarrow CO_2 + H_2O_2$ H)C)C)C)H) o(o)CIO

Reactants	
С	3
н	8
0	2

Γ	Products	
	С	1
	н	2
	0	3

These rules must be followed to balance a chemical equation:
 > only coefficients may be added;
 > the indexes in the chemical formulas of compounds cannot be changed.

Do not write the coefficient 1; it is understood.

When the *equation* is balanced, coefficients that are used must *be whole numbers* reduced to the *lowest term*.

When the equation is balanced, the number of atoms of each element must be the same in the *reactants*(reagents) and the *products*.

Balanced equation for octane (C_8H_{18}) combustion 2 $C_8H_{18 (g)}$ + 25 $O_{2 (g)}$ \rightarrow 16 $CO_{2 (g)}$ + 18 $H_2O_{(g)}$

	<i># of atoms of reactants</i>	<i># of atoms of products</i>
С	$2 \times 8 = 16$	16
H	$2 \times 18 = 36$	$18 \times 2 = 36$
0	$25 \times 2 = 50$	$16 \times 2 + 18 = 50$

The following example shows the balancing of a skeleton equation that presents the reagents and products in the *combustion* of methane(*CH*₄)

Methane (CH₄)

EXAMPLE: Balance the equation:

C: 1 atom

 $CH_4 + O_2 \rightarrow CO_2 + H_2O$

A. First check carbon (C) in methane (CH₄) and carbon dioxide (CO₂).
Since there is one atom of carbon on either side of the equation, it is possible to conclude that the carbon is balanced.

B. Write the coefficient 2 in front of water (H_2O) to balance the 4 hydrogen (H) atoms in the methane.

C. This coefficient 2 in front of water (H_2O) brings total number of oxygen (*O*) atoms in the products of 2 in CO_2 and 2 in H_2O

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

Balance by adding a coefficient 2 in front of the oxygen (O_2) the least complex reactant.

The equation is now balanced.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Balance the following chemical		
equations:		
a) $_2 NO_2 \rightarrow N_2 O_4$		
Elements	Reactants	Products
N	2	2
0	$2 \times 2 = 4$	4

b) $2 CO + O_2 \rightarrow 2 CO_2$

Elements Reactants Products

C	2	2
0	2 + 2 = 4	2×2=4

c) $FeCl_3 + 3 NaOH \rightarrow Fe(OH)_3 + 3 NaCl$		
Elements	Reactants	Products
Fe	1	1
ОН	3	3
Na	3	3
<i>C1</i>	3	3

d) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

Elements Reactants Products

Fe	2	2
С	3	3
0	3+3=6	3×2=6